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ABSTRACT

Interactive Data Exploration (IDE) is a key ingredient of a diverse
set of discovery-oriented applications, including ones from scien-
tific computing and evidence-based medicine. In these applica-
tions, data discovery is a highly ad hoc interactive process where
users execute numerous exploration queries using varying predi-
cates aiming to balance the trade-off between collecting all relevant
information and reducing the size of returned data. Therefore, there
is a strong need to support these human-in-the-loop applications by
assisting their navigation in the data to find interesting objects.

In this paper, we introduce AIDE, an Automatic Interactive Data

Exploration framework, that iteratively steers the user towards in-
teresting data areas and “predicts” a query that retrieves his objects
of interest. Our approach leverages relevance feedback on database
samples to model user interests and strategically collects more sam-
ples to refine the model while minimizing the user effort. AIDE in-
tegrates machine learning and data management techniques to pro-
vide effective data exploration results (matching the user’s interests
with high accuracy) as well as high interactive performance. It de-
livers highly accurate query predictions for very common conjunc-
tive queries with very small user effort while, given a reasonable
number of samples, it can predict with high accuracy complex con-
junctive queries. Furthermore, it provides interactive performance
by limiting the user wait time per iteration to less than a few sec-
onds in average. Our user study indicates that AIDE is a practical
exploration framework as it significantly reduces the user effort and
the total exploration time compared with the current state-of-the-art
approach of manual exploration.
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1. INTRODUCTION
Traditional DBMSs are designed for applications in which the

user queries to be asked are already well understood. There is,
however, a class of interactive data exploration (IDE) applications,
in which users are trying to make sense of the underlying data space
by experimenting with queries, backtracking on the basis of query
results and rewriting their queries aiming to discover interesting
data objects. IDE often incorporates “human-in-the-loop’ and it
is fundamentally a long-running, multi-step process with the user
data interests often specified in imprecise terms.

One example of IDE can be found in the domain of evidence-
based medicine (EBM). Such applications often involve the gener-
ation of systematic reviews, a comprehensive assessment of the to-
tality of evidence that addresses a well-defined question, such as the
effect on mortality of giving versus not giving drug A within three
hours of a symptom B. While a content expert can judge whether
a given clinical trial is of interest or not (e.g., by reviewing pa-
rameter values such as disease, patient age, etc.), he often does not
have a priori knowledge of the exact attributes that should be used
to formulate a query to collect all relevant clinical trials. There-
fore the user relies on an ad hoc process that includes three steps:
1) processing numerous selection queries with iteratively varying
selection predicates, 2) reviewing returned objects (i.e., trials) and
classifying them to relevant and irrelevant, and 3) adjusting accord-
ingly the selection query for the next iteration. The goal here is to
discover a query that balances the trade-off between collecting all
relevant clinical trials and reducing the size of returned trial docu-
ments. These “manual"" explorations are typically labor-intensive:
they may take days to weeks to complete since users need to exam-
ine thousands of objects.

Scientific applications, such as ones analyzing astrophysical sur-
veys (e.g., [2, 4]), also suffer from similar situations: scientists may
not be able to express their data interests precisely. Instead, they
may want to navigate through a subspace of the data set (e.g., a
region of the sky) to find objects of interest, or may want to see
a few samples, provide yes/no feedback, and expect the system to
find more similar objects.

To address the needs of IDE applications, we propose an auto-

matic interactive data exploration (AIDE) framework that automat-
ically “steers” the user towards data areas relevant to his interest.
Our approach integrates the three IDE steps—query formulation,
query processing, and result reviewing—into a single automatic
process, significantly reducing the user effort and the overall ex-
ploration time. In AIDE, the user engages in a “conversation” with
the system indicating his interests, while in the background the
system automatically formulates and processes queries that collect
data matching the user interest.



In AIDE, the user is prompted to label a set of strategically col-
lected sample objects (e.g., clinical trials) as relevant or irrelevant
to his IDE task. Based on his feedback, AIDE generates the user
exploration profile which is used to collect a new set of sample
objects. These new samples are presented to the user and his rele-
vance feedback is incorporated into his profile. In the background,
AIDE leverages the user profile to automatically generate data ex-
traction queries that retrieve more objects relevant to the user’s IDE
task while minimizing the retrieval of irrelevant ones.

The design of AIDE raises new challenges. First, AIDE operates
on the unlabeled space of the whole data space that the user aims
to explore. To offer effective data exploration results (i.e., accu-
rately predict the user’s interests) it has to decide and retrieve in
an online fashion the example objects to be extracted and labeled
by the user. Second, to achieve desirable interactive experience for
the user, AIDE needs not only to provide accurate results, but also
to minimize the number of samples presented to the user (which
determines the amount of user effort).

These challenges cannot be addressed by existing machine learn-
ing techniques. Classification algorithms (e.g., [9]) can be lever-
aged to build the user model and the information retrieval com-
munity offers solutions on incrementally incorporating relevance
feedback in these models (e.g., [31]). However, these approaches
operate under the assumption that the sample set shown to the user
is either known a priori or, in the case of online classification, it
is provided incrementally by a different party. Therefore, classi-
fication algorithms do not deal with which data samples to show
to the user. Furthermore, the active learning community has pro-
posed solutions that maximize the accuracy of the model while
minimizing the number of samples shown to the user. However,
these techniques are domain specific (e.g., document ranking [25],
image retrieval [23], etc.) and they exhaustively examine all ob-
jects in the data set in order to identify the best samples to show to
the user [24]. Therefore, they implicitly assume negligible sample
acquisition costs and hence cannot offer interactive performance
on big data sets as expected by IDE applications. In either case,
model learning and sample acquisition are decoupled, with the ac-
tive learning algorithms not addressing the challenge of how to
minimize the cost of sample acquisition.

To address the above challenges, AIDE closely integrates clas-
sification model learning (from existing labeled samples) and ef-
fective data exploration and sample acquisition (deciding new data
areas to sample). Our techniques leverage the classification proper-
ties of decision tree learning to discover promising data exploration
areas from which new training samples are extracted, as well as to
minimize the number of samples required. These techniques aim to
predict linear patterns of user interests, i.e., range selection queries.

The specific contributions of this work are the following:
1. We introduce AIDE, a novel, automatic data exploration

framework, that navigates the user throughout the data space
he wishes to explore. AIDE relies on the user’s feedback on
example objects to formulate queries that retrieve data rele-
vant to the user. It employs a unique combination of machine
learning, data exploration, and sample acquisition techniques
to deliver highly accurate predictions of linear patterns of
user interests with interactive performance.

2. We propose data exploration techniques that leverage the
properties of classification models to identify single objects
of interest, expand them to more accurate areas of interests,
and progressively refine the characterization of these areas.

3. We introduce optimizations that reduce the number of sam-
ples required by each of the proposed exploration techniques,
the number of sample extraction queries, and the user wait
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Figure 1: Automated Interactive Data Exploration Framework.

time. Our optimizations are designed to address the trade-off
between quality of results (i.e., accuracy) and efficiency (i.e.,
the total exploration time which includes the total sample re-
viewing time and wait time by the user).

4. We evaluated our implementation of AIDE using the SDSS
database [4] and a user study. Our results indicate that AIDE
can predict common conjunctive queries with a small num-
ber of samples, while given an acceptable number of labeled
samples it predicts highly complex disjunctive queries with
high accuracy. AIDE also offers interactive performance as
the user wait time per iteration is less than a few seconds in
average. Our user study revealed that AIDE can reduce the
user’s labeling effort by up 87%, with an average of 66% re-
duction. When also including the sample reviewing time, it
reduced the total exploration time by 47% in average.

The rest of the paper is organized as follows. Section 2 out-
lines the AIDE framework and the phases of our data exploration
approach. Section 3 discusses the object discovery phase, and Sec-
tions 4 and 5 describe the misclassified and boundary exploitation
phase, respectively. Section 6 presents our experimental results.
Section 7 discusses the related work and we conclude in Section 8.

2. AIDE FRAMEWORK OVERVIEW
In this section we describe the main functionality of our system

and the classification algorithms we used. Furthermore, we provide
an overview of our exploration techniques.

2.1 System Model
The workflow of our framework is depicted in Figure 1. Initially,

the user is presented with sample database objects (Initial Sam-

ple Acquisition) and asked to characterize them as relevant or not
to his exploration task. For example, in the domain of evidence-
based medicine, users are shown sample tuples extracted from a
table with clinical trials records and they are asked to review their
attributes (e.g., year, outcome, patience age, medication dosage,
etc) and label each sample trial as interesting or not. In this work
we assume a binary, non noisy, relevance system where the user
indicates whether a data object is relevant or not to him and this
categorization cannot be modified in the following iterations.

The iterative steering process starts when the user provides his
feedback. The labeled samples are used to train a classification
model that characterizes the user interest, e.g., it predicts which
clinical trials are relevant to the user based on the feedback col-
lected so far (Data Classification). Classification models may use
any subset of the object attributes to characterize user interests.
However, domain experts could restrict the attribute set on which
the exploration is performed. For instance, one could request an
exploration only on the attributes dosage and age. In this case,
relevant clinical trials will be characterized only based on these at-
tributes (e.g., relevant trials have dosage >45mg and age <35 years).
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Figure 2: An example decision tree.

In each iteration, more samples (e.g., records of clinical trials)
are extracted and presented to the user for feedback. AIDE lever-
ages the current user model to identify promising sampling ar-
eas (Space Exploration) to retrieve the next sample set from the
database (Sample Extraction). New labeled objects are incorpo-
rated with the already labeled sample set and a new classification
model is built. The steering process is completed when the user ter-
minates the process explicitly, e.g., when reaching a satisfactory set
of relevant objects or when he does not wish to label more samples.
Finally, AIDE “translates” the classification model into a query ex-
pression (Data Extraction Query). This query will retrieve objects
characterized as relevant by the user model (Query Formulation).

AIDE strives to converge to a model that captures the user in-
terest, i.e., eliminating irrelevant objects while identifying a large
fraction of relevant ones. Each round refines the user model by ex-
ploring further the data space. The user decides on the effort he
is willing to invest (i.e., number of samples he labels) while AIDE
leverages his feedback to maximize the accuracy of the classifica-
tion model. The more effort invested in this iterative process, the
better accuracy achieved by the classification model.

2.2 Data Classification & Query Formulation
AIDE relies on decision tree classifiers to identify linear patterns

of user interests. Decision tree learning [9] produces classification
models that predict the class of an unclassified object based on la-
beled training data. The major advantage of decision trees is that
they provide easy to interpret prediction models that describe the
features characterizing each data class. Furthermore, they perform
well with large data and provide a white box model, i.e., the de-
cision conditions of the model can be easily translated to simple
boolean expressions. This feature is important since it allows us to
map decision trees to queries that retrieve the relevant data objects.

Finally, decision trees can handle both numerical and categori-
cal data. This allows AIDE to operate on both data types assuming
a distance function is provided for each domain to calculate the
similarity between two data objects. Measuring the similarity be-
tween two objects is a requirement of the space exploration step.
AIDE treats the similarity computation as an orthogonal step and
can make use of any distance measure.

Query Formulation Let us assume a decision tree classifier that
predicts relevant and irrelevant clinical trials objects based on the
attributes age and dosage as shown in Figure 2. This tree pro-
vides predicates that characterize the relevant class and predicates
that describe the irrelevant class. In Figure 2, the relevant class is
described by the predicates (age ≤ 20 ∧ 10 < dosage ≤ 15) and
(20 < age ≤ 40 ∧ 0 ≤ dosage ≤ 10), while the irrelevant class
is characterized by the predicates (age ≤ 20 ∧ dosage ≤ 10) and
(20 < age ≤ 40 ∧ dosage > 10) (here we ignore the predicates
that refer to values outside attribute domains, such as age > 40,

age < 0, dosage < 0 and dosage > 15). Given the decision tree
in Figure 2 it is straightforward to formulate the extraction query
for the relevant objects (select * from table where (age ≤ 20 and

dosage >10 and dosage ≤ 15) or (age > 20 and age ≤ 40 and

dosage ≥ 0 and dosage ≥ 10)).

2.3 Problem Definition
Given a database schema D, let us assume the user has decided

to focus his exploration on d attributes, where these d attributes
may include both attributes relevant and those irrelevant to the fi-
nal query that represents the true user interest. Each exploration
task is then performed in a d-dimensional space of T tuples where
each tuple represents an object characterized by d attributes. For a
given user, our exploration space is divided to the relevant object
set T r and irrelevant set Tnr . In each iteration i, a sample tuple
set Si ⊆ T is shown to the user and his relevance feedback assigns
them to two data classes, the relevant object class Dr

⊆ T r , and
the irrelevant one, Dnr

⊆ Tnr . Based on the samples assigned
to these classes up to the i-th iteration, a new decision tree classi-
fied Ci is generated. This classifier corresponds to a predicate set
P r
i

⋃
Pnr
i , where the predicates P r

i characterize the relevant class
and predicates Pnr

i describe the irrelevant one.
We measure AIDE’s effectiveness (aka accuracy) by evaluating

the F -measure, the harmonic mean between precision and recall.1

Our goal is to maximize the F -measure of the final decision tree C
on a total data space T , defined as:

F (T ) =
2× precision(T )× recall(T )

precision(T ) + recall(T )
(1)

The perfect precision value of 1.0 means that every object charac-
terized as relevant by the decision tree is indeed relevant, while a
good recall ensures that our final query can retrieve a good percent-
age of the relevant to the user objects.

2.4 Space Exploration Overview
Our main research focus is on optimizing the effectiveness of

the exploration while minimizing the number of samples presented
to the user. We assume that user interests are captured by range

queries, i.e., relevant objects are clustered in one or more areas in
the data space. Therefore, our goal is to discover relevant areas

and formulate user queries that select either a single relevant area
(conjunctive queries) or multiple ones (disjunctive queries).

To do so, AIDE incorporates three exploration phases. First, we
focus on collecting samples from yet unexplored areas and identi-
fying single relevant objects (Relevant Object Discovery). Next, we
strive to expand single relevant objects to relevant areas (Misclassi-

fied Exploitation). Finally, given a set of discovered relevant areas,
we gradually refine their boundaries (Boundary Exploitation).

These phases are designed to collectively increase the accuracy
of the exploration results. Given a set of relevant objects from the
object discovery step, the misclassified exploitation increases the
number of relevant samples in our training set by mapping relevant
objects to relevant areas. Furthermore, as we will discuss in Sec-
tion 4, it reduces misclassified objects (specifically false negatives).
Hence, this step improves both the recall and the precision param-
eters of the F -measure metric. The boundary exploitation further
refines the characterization of the already discovered relevant ar-

1
Here, if tp are the true positives results of the classifier (i.e., correct clas-

sifications as relevant), fp are the false positives (i.e., irrelevant data classi-
fied as relevant) and fn are the false negatives (i.e., relevant data classified
as irrelevant), we define the precision of our classifier as precision =

tp
tp+fp

and the recall as recall = tp
tp+fn

.



eas. Therefore, it discovers more relevant objects and eliminates
misclassified ones, leading also to higher recall and precision.

In each iteration i, these three phases define the new sample set
we will present to the user. Specifically, if T i

discovery , T i
misclass

and T i
boundary samples will be selected by the object discovery,

the misclassified and the boundary exploitation phase, respectively,
then the new sample set in the i-th iteration will be:

Si = T i
discovery + T i

misclass + T i
boundary (2)

One interesting artifact of using the F -measure is that failing to
discover a relevant area reduces our accuracy dramatically more
than failing to precisely characterize the boundaries of that relevant
area. Therefore, if we assume that the user’s relevant objects are
clustered in M > 1 areas, discovering (with slightly imprecise
boundaries) all M relevant areas will lead to higher accuracy that
predicting less than M areas but with highly accurate boundaries.
Therefore, our exploration techniques place a limit on the samples
collected by the boundary exploitation phase, aiming to utilize the
user effort more on the other two more effective phases.

3. RELEVANT OBJECT DISCOVERY
This phase aims to discover relevant objects by showing to the

user samples from diverse data areas. To maximize the coverage
of the exploration space it follows a well-structured approach that
allows AIDE to (1) ensure that the exploration space is explored
widely, (2) keep track of the already explored sub-areas, and (3)
explore different data areas in different granularity.

Our approach operates on a hierarchical exploration grid. For
an exploration task on d attributes, the overall exploration space is
the d-dimensional space defined by the domain of these attributes.
AIDE creates off-line a set of grids where each grid divides the
exploration space into d-dimensional grid cells with equal width in
each dimension. We refer to each grid as an exploration level and
each level has a different granularity, i.e., cells of different width.
Lower exploration levels include finer-grained grids (i.e., more grid
cells of smaller width) and therefore moving between levels allows
us to “zoom in/out” into specific areas as needed.

Exploration Level Construction To generate an exploration
level we divide each normalized attribute domain2 into β equal
width ranges, effectively creating βd grid cells. The β parameter
defines the granularity of the specific exploration level. A higher
number leads to more grid cells of smaller width per dimension and
the use of more samples to explore all grid cells for fine-grained
search for relevant objects. Each cell in our grid covers a certain
range of attribute values for each of the d exploration attributes.
Therefore, each cell includes a set of unique attribute value combi-
nations. Each combination can be mapped to a set of data objects
that match these attribute values. Next we present the general al-
gorithm for this phase which explores uniformly all cells, collects
one object from each cell and shows it to the user for feedback.

Object Discovery Phase Our approach starts at a given explo-
ration level and retrieves one data object from each non-empty cell.
Our goal is to uniformly spread the samples we collect across the
grid cells to ensure the highest coverage of the exploration space.
We achieve that by retrieving objects that are on or close to the
center of each cell. Since the exploration levels are defined on the
normalized domains of d attributes and we split each domain to
β equal width ranges, each cell covers a range of δ = 100/β of
the domain for each attribute. For each cell, we identify the “vir-

2
We normalize each domain to be between [0,100]. This allow us to reason

about the distance between values uniformly across domains. Operating on
actual domains will not affect the design of our framework or our results.
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Figure 3: Grid-based object discovery example in 2-D space.

tual” center and we retrieve a single random object within distance
γ < δ/2 along each dimension from this center. This approach
guarantees that at each exploration level the retrieved samples are
within δ ± (2 × γ) normalized distance from each other. Figure 3
shows a two-level 2-dimensional hierarchical grid (we show the
second exploration level only for the top right grid cell) and the
center for each cell.

The sampling distance around the center of each cell, i.e., the
γ parameter, depends on the skewness of each attribute domain.
Specifically, we adjust γ based on the density of the cell. Sparse
cells should use a higher γ value than dense ones to increase their
sampling areas and hence improve the probability of retrieving one
(relevant) object per grid cell. This will reduce ineffective zoom in
operations into the next level for that cell.

Our general grid-based exploration proceeds as follows. In the
first iteration we show to the user one object for each cell of the ini-
tial exploration level and we request his feedback (no other phases
are applied in the first iteration). If no relevant object is retrieved
from one cell, we can safely infer that the whole grid cell is not
included in any relevant area. However, sub-areas of the grid could
partially overlap with some relevant areas. Therefore, we further
explore this grid by “zooming-in” and using a lower exploration
level (only for the specific cell). In Figure 3 we found one relevant
object in all but the top right cell and so we use the next exploration
level for that cell only: we will search for objects around the center
of the smaller four sub-cells inside the higher level cell.

By using this grid-based approach, our framework is able to keep
track of the already explored subareas in the data space, spread
its exploration across the whole domain of all the exploration at-
tributes, avoid sampling of overlapping areas. At each exploration
level the system requires βd samples (equal to the number of grid
cells for that level) to fully explore that level. Assuming the user
is willing to label more samples the system can continue showing
labels from the next, finer-grained level.

3.1 Optimizations
Next we discuss two optimizations for improving the relevant

object discovery phase.
Hint-based Object Discovery Our general grid-based explo-

ration assumes that our system does not have any information about
the areas that the user is looking for. However, if the user provides
some hints about his interests, this process can be optimized. One
hint may be that the selection ranges in a given attribute d will
have a width of at least xd. For instance, the user may be inter-
ested in clinical trials at least one year apart or sky objects within
a certain distance from each other. Given the parameter xd, AIDE
can initiate its exploration on the exploration level with cell width
δ ≤ xd/100. This will ensure that we will retrieve exactly one rel-
evant object from each area of interest, therefore we will not miss



any relevant areas. Assuming that the user is willing to provide
feedback on at least βd samples (plus more samples for the two
other phases) this hint can prevent unnecessary sampling on higher
exploration levels, therefore improving the convergence to an ac-
curate result while reducing the user’s labeling effort.

Another hint is based on specific attribute ranges on which the
user desires to focus (e.g., clinical trials in years [2000, 2010]).
These range-based hints allow our framework to operate on spe-
cific grid cells and avoid necessary sampling and computation on
irrelevant data areas. Obviously the more specific these hints, the
more accurate the final query and the less the user labeling effort.

Handling Skewed Attributes Our grid construction approach
is skew-agnostic: it creates equal width cells regardless of the cell
density, i.e., the number of data objects mapped to each cell. In the
presence of skewed exploration domains this approach will con-
struct cells with highly diverse density. For those cells with low
density (sparse areas), AIDE has a slim chance to discover sam-
ples close to its center. The current approach will then zoom into
a lower exploration level to collect samples from the smaller sub-
cells. This extra cost, however, often does not result in improved
accuracy because the number of samples returned from a sparse
area may be too low to improve the F -measure substantially.

To address this issue, we propose a skew-aware clustering-based
approach for identifying sampling areas. More specifically, AIDE
uses the k-means algorithm [9] to partition the data space into k
clusters. Each cluster is characterized by its centroid and database
objects are assigned to the cluster with the closest centroid. Thus,
each cluster includes similar objects (where similarity is defined by
a distance function) and each centroid serves as a good represen-
tative of the cluster’s objects. Under this approach, AIDE collects
samples around the centroid of each cluster. Specifically, we show
one object per cluster within distance γ < δ along each dimen-
sion from the cluster’s centroid, where δ is the radius of the cluster.
We create multiple exploration levels, where higher levels include
fewer clusters than lower ones, and we initialize our exploration
on the highest level. If no interesting objects are discovered, we
sample the lower level where finer-grained clusters are available.

In the presence of skewed exploration domains, this approach
will be more effective since k-means will create most of the clusters
in dense areas. This will allow AIDE to focus its sampling in areas
with high density. Assuming that the user interests lie mostly in
dense areas, our technique will avoid redundant sampling in sparse
areas and the unnecessary subsequent zooming into the next level.
Therefore, AIDE will converge to an accurate result with fewer
labeled samples for those skewed exploration attributes.

4. MISCLASSIFIED EXPLOITATION
The object discovery phase identifies single points of interest,

specifically, at most one in each sampling area (gird cell or cluster)
explored. Our goal though is to discover relevant areas as opposed
to single objects. To map relevant points to relevant areas, a sig-
nificant number of relevant objects from within each relevant area
need to be fed to the classification algorithm. However, the object
discovery phase cannot achieve this solely (except when the rele-
vant areas are much larger than individual grid cells). Therefore,
AIDE employs the misclassified samples exploitation phase to in-
crease the relevant objects in our training set such that the predicted
queries will select relevant areas. This phase is designed to in-
crease both the precision and recall of the final query as it increases
the relevant samples while reducing the misclassified ones.

In this section we first discuss how misclassified samples are
generated. By interpreting the characteristics of these samples we
propose a clustering-based exploration technique that increases the
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Figure 4: Misclassified objects and sampling around a single object.

accuracy of our approach. Our technique strives to limit the number
of extraction queries and hence the time overhead of this phase.

4.1 Generation of Misclassified Samples
Let us assume that in iteration i a new decision tree classifier Ci

is generated based on the sample set Ti. The decision tree char-
acterizes a set of relevant and irrelevant areas. In the first few it-
erations, these areas typically cannot classify the training data ac-
curately, leading to: (i) false positives, i.e., objects that are cate-
gorized as relevant by the classifier but labeled as irrelevant by the
user and (ii) false negatives, i.e., objects labeled as relevant but
categorized as irrelevant by the classifier. AIDE leverages the mis-
classified samples to identify the next set of sampling areas. Since
each type of misclassified samples has unique characteristics, we
handle them differently.

False negatives are objects of interest that belong in a relevant
area. However, there are no sufficient samples from within that
area to allow the classifier to characterize this area as relevant. Note
that the object discovery phase provides a single object from each
sampling area (i.e., grid cell or cluster). If this object is labeled as
interesting then the training set of the following iteration will in-
clude only one relevant object from that sampling area. Depending
on the sampling area size and the number of relevant areas, even
neighboring grid cells or clusters may not provide enough relevant
samples to predict the relevant area. AIDE addresses the lack of
relevant samples by collecting more objects around false negatives.

False positives on the other hand are less common in decision
tree classifiers. This is due to the metrics used by decision tree al-
gorithms for deciding the best classification rules for each class. In
our case (CART [9]), this metric measures the homogeneity of the
discovered relevant and irrelevant areas and the decision tree algo-
rithm opts for rules that maximize this homogeneity. Practically,
this implies that the predicted relevant areas are chosen to include
as many of the relevant samples while minimizing the irrelevant
ones. Therefore, most false positives are due to wrongly predicted
boundaries of discovered relevant areas. Figure 4 shows examples
of false positives around a not precisely predicted relevant area.
This problem will be addressed by the boundary exploitation phase
(Section 5) which refines the relevant areas.

4.2 Misclassified Samples Exploitation
Our misclassified exploitation phase operates under the assump-

tion that relevant tuples will be clustered close to each other, i.e.,
they typically form relevant areas. One possible technique to lever-
age this knowledge is to handle each misclassified sample inde-
pendently and collect samples around each false negative to ob-
tain more relevant samples. Our experimental results show that this
technique is very successful in identifying relevant areas. However,
it incurs high time cost, mainly because (i) we execute one retrieval
query per misclassified object and (ii) we often redundantly sam-
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Figure 5: Clustering based misclassified sampling.

ple highly overlapping areas, spending resources (i.e., user labeling
effort) without increasing AIDE’s accuracy. The last problem ap-
pears when many misclassified samples are close to each other.

We also noticed that sampling around each misclassified object
often requires multiple iterations of the misclassified exploitation
phase before the decision tree has enough samples to identify a rel-
evant area. Let us assume that in the i-th iteration the training set Ti

has mi false negatives based on the classifier Ci. Then, in the next
iteration i + 1 we add T i+1

missclass = mi ∗ f samples, where f is
the number of samples we collect around each false negative. If the
relevant area is still not discovered, these samples are also misclas-
sified and then f samples are collected around each one of these
samples. If AIDE needs k iterations to identify a relevant area, the
user might have labeled fk labeled samples without improving the
F -measure (i.e., discovering a relevant area).

Clustering-based Exploitation To address this limitation,
AIDE employs a clustering-based approach. The intuition is that
misclassified samples that belong in the same relevant area will be
located close to each other. Therefore, instead of sampling around
each misclassified sample independently, we generate clusters of

misclassified objects and we sample around each cluster. An exam-
ple of a cluster is shown in Figure 5. We create clusters using the
k-means algorithm [9] and have one sampling area per cluster.

The main challenge in this approach is identifying the number
of clusters we need to create. Ideally, we would like the number of
clusters to match the number of relevant areas we have “hit” so far,
i.e., the number of areas from which we have collected at least one
relevant object. This will ensure that we will sample within each
discovered relevant area. We argue that the number of relevant ob-
jects created by the object discovery phase is a strong indicator of
the number of relevant areas we have already “hit”. The object
discovery phase identifies objects of interest that belong to either
different areas or the same relevant area. In the former case, our
indicator offers correct information. In the latter case, our indicator
will lead us to create more clusters than the already “hit” relevant
areas. However, since these clusters belong in the same relevant
area they are typically close to each other and therefore the deci-
sion tree classifier eventually “merges” them and converges to an
accurate number of relevant areas.

In each iteration i, the algorithm sets k to be the overall number
of relevant objects discovered in the object discovery phase. Since
our goal is to reduce the number of sampling areas (and therefore
the number of sample extraction queries), we run the clustering-
based exploitation only if k is less than the number of false neg-
atives. Otherwise we collect f random sample around each false
negative. These samples are retrieved randomly from a normalized
distance y on each dimension from the false negative, as shown in
Figure 4. When clusters are created, we collect samples within a
distance y from the farthest cluster member in each dimension. For
each cluster we issue a query that retrieves f × c random samples

within a sampling area, where c is the size of the cluster (number
of cluster members). Figure 5 shows an example.

Our experimental results showed that f should be set to a small
number (10-25 samples) since higher values will increase the user
effort without improving the exploration outcome. The closer the
value y is to the width of the relevant area we aim to predict,
the higher the probability to collect relevant objects than irrelevant
ones. An interesting optimization would be to dynamically adapt
this value based on the current prediction of the relevant areas. We
plan to explore this direction in our future work.

5. BOUNDARY EXPLOITATION
Given a set of relevant areas identified by the decision tree clas-

sifier, our next phase aims to refine these areas by incrementally
adjusting their boundaries. This leads to better characterization of
the user’s interests, i.e., higher accuracy of our final results. In this
section, we describe our general approach. We also discuss a se-
ries of optimizations that allow us to reduce the number of samples
and the sample extraction time required to refine the boundaries of
already discovered areas.

5.1 General Boundary Exploitation
AIDE represents the decision tree classifier Ci generated at the

i-th iteration as a set of hyper-rectangles in a d-dimensional space
defined by the predicates in P r

i

⋃
Pnr
i , where the predicates P r

i

characterize the relevant areas and predicates Pnr
i describe the ir-

relevant areas. We iteratively refine these predicates by shrinking

and/or expanding the boundaries of the hyper-rectangles. Figure 6
shows the rectangles for the classifier in Figure 2. If our classifi-
cation is based on d attributes (d = 2 in our example) then a d-
dimensional area defined by p ∈ P r

i will include objects classified
as relevant (e.g., areas A and D in Figure 6). Similarly, objects in
an area defined by p ∈ Pnr

i are classified as irrelevant (e.g., areas
B and C in Figure 6).

Our evaluation showed that this phase has the smallest impact
on the effectiveness of our model: not discovering a relevant area
can reduce our accuracy more than a partially discovered relevant
area with imprecise boundaries. Hence, we constrain the number
of samples used during this phase to αmax. This allows us to better
utilize the user effort as he will provide feedback mostly on samples
generated from the previous two, more effective phases.

Our approach aims to distribute an equal amount of user effort
to refine each boundary. Let us assume the decision tree has re-
vealed k d-dimensional relevant areas. Each area has 2d bound-
aries. Hence we collect αmax/(k × 2d) random samples within
a distance ±x from the each boundary. This approach is applied
across all the boundaries of the relevant hyper-rectangles, allowing
us to shrink/expand each dimension of the relevant areas. The new
collected samples, once labeled by the user, will increase the recall
metric: they will discover more relevant tuples (if they exist) and
eventually refine the boundaries of the relevant areas.

The x parameter can affect how fast we converge to the real rel-
evant boundary. If the difference between the predicted and real
boundaries is less than x, this phase will retrieve both relevant and
irrelevant samples around the boundary and allow the decision tree
to more accurately predict the real boundary of the relevant area.
Otherwise, we will mostly collect relevant samples. This will still
improve our prediction of the boundary by bringing it closer to the
actual one, but it will slow down the convergence to the actual rel-
evant area. We follow a conservative approach and set x to 1 (we
search for objects with normalized distance ±1 from the current
predicted boundary). This gradually improves our recall metric.
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Figure 6: Boundary exploration for the relevant areas A and D.

Figure 6 shows with dotted lines the sampling areas when we
shrink/expand the boundaries of the relevant area D (20 < age ≤

40 ∧ 0 ≤ dosage ≤ 10 of our example tree in Figure 2). Here, we
collect samples that have distance x = 1 from the dosage = 10
boundary, i.e., random samples within the 9 ≤ dosage ≤ 11 area.

5.2 Optimizations
Next we propose optimizations for boundary exploitation.
Adaptive Sample Size The first optimization dynamically

adapts the number of samples collected. The goal is to reduce the
sample size around boundaries that are already predicted with ac-
ceptable accuracy. The challenge here is that the accuracy of the
projected areas cannot be determined in real-time as the actual in-
terest of the user is unknown to our system. To address this, we
leverage information from the already built decision tree.

Our decision tree consists of a set of decision nodes (also named
split rules). Each rule corresponds to a boundary of a relevant or
irrelevant area. AIDE identifies the split rules that characterize a
relevant area (e.g., dosage > 10, dosage ≤ 15 in Figure 2) and
in each iteration quantifies the change of this rule (i.e., the change
of its boundary value). Bigger changes of a split rule will lead to
more samples extracted around the corresponding boundary. The
intuition is that significant changes in the rule indicate that the cor-
responding boundary is not yet very accurate, and hence new sam-
ples were able to affect its split rule significantly. In the contrary,
small changes in the split rule between two iterations indicate that
the decision tree already has a good approximation of the boundary
and the new samples did not affect the accuracy of the specific rule.
In this case we restrict the samples provided to the user to a lower
limit. We keep collecting this lower limit from all, even unmodi-
fied boundaries, to compensate the cases where lack of change in
a boundary was due to randomness of the sample set and not to
precise predictions of its coordinates.

Given a set of new training samples Ti at the i-th iteration, our
algorithm will identify the decision tree split rules that are modified
and translate them to changes on the boundaries of relevant areas.
In each iteration i the number of samples collected in the boundary
exploitation phase is calculated as:

T i
boundary =

j=2
d∑

j=0

(pcji−1 ∗
amax

k × 2d
) + er ∗ (k × 2d)

where d is the dimensionality of the exploration space, pcji−1 is the
percentage of change of the boundary j between the (i− 1)-th and
i-th iterations, and er is an error variable to cover cases where the
boundary is not modified but also not accurately predicted. The
percentage of change pci−1 is calculated as the difference of the
boundary’s normalized values of the specific dimension.

Non-overlapping Sampling Areas Although the boundary ex-
ploitation can be effective, it is often the case that new samples
lead to only a slightly (or not at all) modified decision tree. In this
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Figure 7: Overlap of sampling areas for similar decision trees.

case, the exploration areas did not evolve significantly between it-
erations, resulting in redundant sampling and increased exploration
cost (e.g., user effort) without improvements on classification accu-
racy. Figure 7 shows an example of this case, where one iteration
indicates that relevant tuples are within area A whereas the fol-
lowing iteration reveals area B as the relevant one. Given the high
overlap of A and B, the sampling areas around boundaries, e.g., SA

and SB , will also highly overlap.
To address this challenge we rely on the decision tree structure.

In each iteration, we identify the decision tree nodes that are mod-
ified and translate them to changes on the boundaries of relevant
areas. Our sampling will then be limited to only areas with small
or no overlap. For example, in Figure 7 in the second iteration we
will sample area S′

B (but not SB), since it does not overlap with the
previous sampling areas S′

A and SA. This approach allowes us to
more efficiently steer the user towards interesting areas by reducing
the number of iterations and the cost of redundant sampling.

Identifying Irrelevant Attributes Our general boundary ex-
ploitation is applied only on the attributes appearing in the decision
tree and on the range of each attribute domain selected by the de-
cision tree. Inevitably, this approach introduces skewness on the
exploration attributes which in some cases may prevent the conver-
gence to a good classification model. The problem is particularly
obvious when the decision tree includes split rules with attributes
irrelevant to the user interests, often due to lack of sufficient train-
ing samples. In our current experimentation we have often seen
such cases which resulted into proposing a final query with differ-
ent selection attributes than the user’s intended query.

To handle these cases we rely on domain sampling around the
boundaries. While we shrink/expand one dimension of a relevant
area we collect random samples over the whole domain of the re-
maining dimensions. Figure 6 demonstrates our technique: while
the samples we collect are within the range 11 ≤ dosage ≤ 9
they are randomly distributed on the domain of the age dimen-
sion. Our experimental results are based on this approach and we
observed that the quality of our final classifier was noticeably im-
proved compared with an approach that selects samples bounded
in all dimensions of the relevant areas (e.g., samples in the range
11 ≤ dosage ≤ 9 ∧ 20 ≤ age ≤ 40).

Exploration on Sampled Datasets The previous optimization
forces our sample extraction queries of this phase to execute ran-
dom sampling across the whole domain of each attribute. Such
queries are particularly expensive, since they need to fully scan the
whole domain of all attributes. Even when covering indexes are
used to prevent access to disk, the whole index needs to be read
for every query, increasing the sampling extraction overhead. We
observed that although sampling on the whole domain improves
our accuracy by an average of 42%, it also has a time overhead of
95% more than the other two phases. This overhead becomes even
higher as we increase the size of our database.



To improve our sample extraction time and improve the scal-
ability of AIDE, we apply our techniques on sampled data sets.
Specifically, we generate a random sampled database and extract
our samples from the smaller sampled dataset. We note that this
optimization can be used for both the misclassified and the bound-
ary exploitation phases. This allows our sample extraction time to
improve, with the most positive impact coming from the bound-
ary exploitation phase. We observed that operating on a sampled
dataset with size equal to 10% of that of the original data set can
improve our boundary exploitation time by up to 83.4% and the
time for the misclassified exploitation phase by up to 74.5%.

Operating on sampled datasets could potentially reduce the ac-
curacy of our exploration results. However, an interesting artifact
of our exploration techniques is that their accuracy does not depend
on the frequency of each attribute value, or on the presence of all
available tuples of our database. This is because each phase ex-
ecutes random selections within data hyper-rectangles and hence
these selections do not need to be deterministic. In the contrary, as
long as the domain value distribution within these hyper-rectangles
is roughly preserved, our techniques are still equally effective on
the sample dataset as in the actual one (i.e., their accuracy will not
be reduced significantly). Therefore, we generate our sampled data
sets using a simple random sampling approach that picks each tuple
with the same probability [22]. This preserves the value distribu-
tion of the underlying attribute domains and allows us to offer a
similar level of accuracy but with significantly less time overhead.

6. EXPERIMENTAL EVALUATION
Next, we present experimental results from a micro-benchmark

on the SDSS dataset [4] and from a user study.

6.1 Experimental Setup: SDSS Dataset
We implemented our framework on JVM 1.7. In our experiments

we used various Sloan Digital Sky Survey datasets (SDSS) [4] with
a size of 10GB-100GB (3×106−30×106 tuples). Our exploration
was performed on combinations of five numerical attributes (rowc,
colc, ra, field, fieldID, dec) of the PhotoObjAll table.
These are attributes with different value distributions, allowing us
to experiment with both skewed and roughly uniform exploration
spaces. A covering index on these attributes was always used. We
used by default a 10GB dataset and a dense exploration space on
rowc and colc, unless otherwise noted. All our experiments were
run on an Intel PowerEdge R320 server with 32GB RAM using
MySQL. We used Weka [5] for executing the CART [9] decision
tree algorithm and the k-means clustering algorithm. All experi-
ments report averages of ten exploration sessions.

Target Queries AIDE characterizes user interests and eventu-
ally “predicts” the queries that retrieve his relevant objects. We fo-
cus on predicting range queries (target queries) and we vary their
complexity based on: a) the number of disjunctive predicates they
include (number of relevant areas) and b) the data space coverage
of the relevant areas, i.e., the width of the range for each attribute
(relevant area size). Specifically, we categorize relevant areas to
small, medium and large. Small areas have attribute ranges with
average width of 1-3% of their normalized domain, while medium
areas have width 4-6% and large ones have 7-9%. We also ex-
perimented with queries with a single relevant area (conjunctive
queries) as well as complex disjunctive queries that select 3, 5 and
7 relevant areas. The higher the number of relevant areas and the
smaller these areas, the more challenging is to predict them.

The diversity of our target query set is driven by the query char-
acteristics we observed in the SDSS sample query set [3]. Specif-
ically, 90% of their queries select a single area, while 10% select

only 4 areas. Our experiments cover even more complex cases of 5
and 7 areas. Furthermore, 20% of the predicates used in SDSS
queries cover 1-3.5% of their domain, 3% of them have cover-
age around 13%, and 50% of the predicates have coverage 50% or
higher while the median coverage is 3.4%. Our target queries have
domain coverage (i.e., the relevant area size) between 1-9% and our
results demonstrate that we perform better as the size of the areas
increases. Hence, we believe that our query set has a good cover-
age of queries used in real-world applications while they also cover
significantly more complex cases.

User Simulation Given a target query, we simulate the user by
executing the query to collect the exact target set of relevant tu-
ples. We rely on this set to label the new sample set we extract in
each iteration as relevant or irrelevant depending on whether they
are included in the target set. We also use this set to evaluate the
accuracy (F -measure) of our final predicted extraction queries.

Evaluation Metrics We measure the accuracy of our approach
using the F -measure (Equation 1) of our final extraction query and
report the number of labeled samples required to reach different
accuracy levels. Our efficiency metric is the system execution time

(equivalent to user wait time), which include the time for the space
exploration, data classification, and sample extraction. We may
also report the total exploration time, which includes both the sys-
tem execution time and the sample reviewing time by the user.

6.2 Effectiveness & Efficiency of AIDE
Figure 8(a) shows AIDE’s effectiveness when we increase the

query complexity by varying the size of relevant areas from
large (AIDE-Large) to medium (AIDE-Medium) and small (AIDE-

Small). Our queries have one relevant area which is the most com-
mon range query in SSDS. Naturally, labeling more samples im-
proves in all cases the accuracy. As the query complexity increases
the user needs to provide more samples to get the same level of ac-
curacy. By requesting feedback on only 215 out of 3× 106 objects
AIDE predicts large relevant areas with accuracy higher than 60%
(with 350 samples we have an accuracy higher than 80%). In this
case, the user needs to label only 0.4% of the total relevant objects
and 0.01% of the irrelevant objects in the database. Furthermore,
AIDE needs only 345 samples to predict medium areas and 600
samples for small areas to get an accuracy of at least 60%.

We also increased the query complexity by varying the number
of areas from one (1) to seven (7). Figure 8(b) shows our results for
the case of large relevant areas. While AIDE can perform very well
for common conjunctive queries (i.e., with one (1) relevant area),
to accurately predict highly complex disjunctive queries more sam-
ples are needed. However, even for highly complex queries of
seven (7) areas we get an accuracy of 60% or higher with reason-
able number of samples (at least 450 samples).

Figure 8(c) shows the execution time overhead (seconds in aver-
age per iteration). In all cases, high accuracy requires the extraction
of more samples which increases the exploration time. The com-
plexity of the query (size of relevant areas) also affects the time
overhead. Searching for larger relevant areas leads to more sample
extraction queries around the boundaries of these relevant areas.
However, our time overhead is acceptable: to get an accuracy of
60% the user wait time per iteration is less than one second for
small and medium areas, and 1.02 second for large areas, while to
get highly accurate predictions (90%-100%) the user experiences
4.79 second wait time in average. To reach the highest accuracy (>
90%) AIDE executed 23.7 iterations in average for the large areas,
37 iterations for the medium and 33.4 iterations for the small areas.

Comparison with Random Exploration Next we compared our
approach (AIDE) with two alternative exploration techniques. Ran-
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(a) Accuracy for increasing area size (1 area).
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(b) Accuracy for increasing number of areas (large areas).
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(c) Time for increasing area size (1 area).

!"

#!!!"

$!!!"

%!!!"

&!!!"

'!!!"

(!!!"

)*+,-"" .-/012"" 32*44"

!
"
#
$
%
&'
(
)'
*
+
#
,
-%
.'

/0#%+."&%'123'

5678" 9*:/;2" 9*:/;2<=+0/"

(d) Comparison to random exploration for increasing

area size (>70% accuracy, 1 area).
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(e) Comparison to random exploration for increasing

number of areas (>70% accuracy, large areas).
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(f) Impact of exploration phases (1 large area).

Figure 8: Figures (a), (b) show AIDE’s effectiveness, i.e., prediction accuracy. Figure (c) shows efficiency results, i.e., time overhead. Figures (d) and (e)
compare AIDE with random exploration techniques. Figure (f) demonstrates the effectiveness of AIDE’s exploration phases.
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(a) Accuracy for increasing data set size (1 large area).
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(b) Impact of sampled datasets on accuracy and time

overhead (1 large area).
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(c) Time improvement of sampled datasets and increasing

number of areas (>70% accuracy, large areas).

Figure 9: AIDE’s effectiveness and efficiency on big data sets.

dom randomly selects 20 samples per iteration, presents them to the
user for feedback and then builds a classification model. Random-

Grid is similar to Random but the sample selection is done on our
exploration grid, i.e., it selects one random sample around the cen-
ter of each grid cell. This allows our samples to be better distributed
across the exploration space. This approach also collects 20 sam-
ples per iteration. AIDE also limits the number of new samples it
extracts per iteration: we calculated the number of samples needed
for the boundary and the misclassified exploitation and we used the
remaining of 20 samples to sample unexplored yet grid cells.

Figure 8(d) shows the number of samples needed to achieve an
accuracy of at least 70% when our target queries have one (1) rel-
evant area and varying size. AIDE is consistently highly effective:
it requires only 308 samples for large areas and 365 and 623 sam-
ples in average for medium and small samples, respectively. Both
random exploration approaches cannot discover small and medium
areas with that few samples. Random fails to discover small areas
of interest even when we increase the labeled set to 6,400 samples,
while Random-Grid needs 5,457 samples in average for these com-
plex queries. Random can identify medium and large relevant areas
with 70% accuracy when given at least 2,690 and 1,180 samples re-
spectively. Random-Grid is also highly ineffective, since it needs
1,380 and 1,275 samples in average for medium and large areas.
Figure 8(e) shows the number of samples to achieve at least 70%
accuracy when varying the number of target relevant areas. AIDE
consistently requires less samples (less than 500 samples for all
cases) than Random and Random Grid (more than 1,000 samples
in almost all cases). AIDE outperforms Random and Random-
Grid since it optimizes the sample selection process through the
misclassified and boundary exploitation phases, leading to highly
accurate results with less sampled data.

Impact of Exploration Phases We also studied the impact of
each exploration phase independently. Figure 8(f) compares the
number of samples we need to reach different accuracy levels for
queries with one large relevant area. We compare AIDE with two
variants: one that uses only the object discovery phase (Random-

Grid) and one that adds only the misclassified exploitation phase
(Random-Grid+Misclassified). The results show that combining
all three phases gives the best results. Specifically, using only the
object discovery phase requires consistently more than 1,000 sam-
ples to get an accuracy greater than 40%. Adding the misclassified
exploitation phase reduces the sample requirements by 60% in av-
erage while adding the boundary exploitation phase allows us to
achieve higher accuracy with 42% less samples in average. Hence,
combining all three phases is highly effective in predicting relevant
areas while reducing the amount of user effort.

6.3 Scalability
We also evaluated the scalability of our framework.
Database Size Figure 9(a) shows the accuracy we can achieve

with a given number of labeled samples for dataset sizes of 10GB,
50GB and 100GB. Our target queries have one large relevant area
and the average number of relevant objects increases as we increase
the size of the dataset (our target query returns in average 26,817
relevant objects in the 10GB, 120,136 objects in the 50GB and
238,898 objects in the 100GB database). AIDE predicts these ob-
jects in all datasets with high accuracy without increasing the user’s
effort. We conclude that the size of the database does not affect our
effectiveness. AIDE consistently achieves high accuracy of more
than 80% on big data sets with only a few hundreds of samples
(e.g., 400 samples). These results were consistent even for more
complex queries with multiple relevant areas.
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(a) Accuracy for multi-dimensional exploration spaces

(>70% accuracy, large areas).
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(b) Time for multi-dimensional exploration spaces

(>70% accuracy, large areas).
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(c) Accuracy for skewed data sets (>70% accuracy, 1

large area).
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(d) Distance-based hint optimization (>70% accuracy and

medium areas).
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(e) Clustered-based misclassified exploitation (>70%

accuracy and large areas).
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(f) Adaptive sample size set (large areas).

Figure 10: AIDE’s performance on multi-dimensional exploration spaces (Figures (a-b)) and on skewed exploration spaces (Figure (c)). Figures (d-e-f)
demonstrate the effectiveness of our optimizations.

Sampled Datasets Applying our techniques to larger datasets
increases the time overhead since our sampling queries have higher
response times. One optimization is to execute our exploration on
a sampled database (Section 5.2). In this experiment, we sam-
pled datasets of 10GB, 50GB, 100GB and generated the 10%
sampled datasets of 1GB, 5GB and 10GB, respectively. Fig-
ure 9(b) shows the absolute difference of the final accuracy (10GB-

Accuracy, 50GB-Accuracy, 100GB-Accuracy) when AIDE is ap-
plied on the sampled and on the total datasets. The average differ-
ence is no more than 7.15% for the 10GB, 2.72% for the 50GB and
5.85% for the 100GB data set. In the same figure we also show
the improvement of the system execution time (10GB-Time, 50GB-

Time, 100GB-Time). For 10GB (and a sampled dataset of 1GB) this
time is reduced by 88% in average, while for the larger datasets of
50GB and 100GB it is reduced by 96%-97%.

Figure 9(c) shows the improvement of the system execution time
when AIDE runs over the sampled data sets and we increase the
number of relevant areas. Here, we measure the improvement of
the system execution time when we reach an accuracy higher than
70% . The average time per iteration is 2.8 seconds for the 10GB,
37.7 for the 50GB and 111 for the 100GB database. By operating
on the sampled datasets we improved our time by more than 84%
while our average improvement for each query type was more than
91%. Our improved iteration time is 0.37 second for the 10GB,
2.14 seconds for the 50GB and 5.3 seconds for the 100GB dataset,
in average. The average number of iterations is 37 and hence AIDE
offers a total execution time of 13secs for the 10GB, 1.3mins for
the 50GB and 3.2mins for the 50GB dataset while the user wait
time is less than 3secs per iteration in average. Hence, AIDE can
scale to big datasets by applying its techniques on sampled datasets.
This incurs very low impact on the accuracy while it significantly
improves the system execution time.

Exploration Space Size Figure 10(a) shows the number of sam-
ples to reach an accuracy greater than 70% as we increase the com-
plexity of our queries (the number of relevant areas) and the size of
our exploration space from 2-dimensional to 5-dimensional. These
results are on large size areas and on the sampled datasets. Our tar-
get queries have conjunctions on two attributes and the main chal-
lenge for AIDE is to identify in the 3D, 4D and 5D spaces only
the two relevant attributes. AIDE correctly identifies the irrelevant
attributes and eliminates them from the decision tree classifier and

hence from the final output query. Furthermore, although the ex-
ploration over more dimensions requires naturally more samples
to reach an acceptable accuracy, the number of samples only in-
creases by a small percentage (the 3D space and 4D space require
in average 13% more tuples than the 2D space and the 5D space re-
quires 32% more tuples than the 2D space) and they remain within
the range of 100’s even for the complex cases of 7 areas and 5-
dimensional exploration space. Figure 10(b) shows that even for
the very complex case of seven (7) relevant areas the time overhead
is always less than 4.5 seconds, while for the less complex queries
of 1 area the time drops below 1 second. These results reveal a
small increase in the user’s wait time as we add more dimensions
(each new dimension adds in average 0.7 seconds overhead to the
previous one) but always within acceptable bounds.

6.4 Effectiveness of Optimizations
Next we study the impact of our proposed optimizations.
Handling Skewed Attributes We also studied AIDE in the pres-

ence of skewed exploration spaces. We experimented with three
types of 2-dimensional exploration spaces: (a) NoSkew where we
use two non-skewed attributes (rowc, colc), (b) HalfSkew that in-
cludes one skewed (dec) and one non-skewed attribute (rowc) and
(c) Skew that uses two skewed attributes (dec, ra). Figure 10(c)
shows the number of samples needed to achieve accuracy greater
than 70% for queries with one large relevant area. For the Skew and
NoSkew case this area is located on a dense region, while for the
HalfSkew case we experimented with queries that cover both sparse
and dense areas. We compare three variants: (a) AIDE that uses
the grid-based technique for the relevant object discovery phase,
(b) AIDE-Clustering that uses the clustering-based optimization for
skewed distributions (Section 3.1), and (c) AIDE-Sample that uses
the grib-based approach on a sampled dataset.

The results show that the clustering optimization requires 87%
less samples than the grid-based approach when predicting dense
relevant areas within highly skewed data spaces. This is because
both the cluster and our relevant areas are concentrated in dense
sub-areas while grid cells are created uniformly across the data
space. This allows AIDE-Clustering to sample smaller, finer-
grained areas than the grid-based approach, eliminating the need
to zoom into the next exploration level. When the distribution is
uniform (NoSkew) clusters and grid cells are highly aligned pro-



viding roughly the same results. In the hybrid case (HalfSkew) our
relevant areas and our grid-cells cover both dense and sparse areas.
The clustering technique though creates most of its clusters on the
dense areas and hence fails to discover relevant objects in the sparse
ones. It therefore has to zoom in into finer exploration levels and it
required 73% more samples to converge to the same accuracy as the
grid-based technique. This result indicates that a hybrid approach
could be the best strategy for the relevant object discovery phase.
AIDE would be initialized with the clustered approach to explore
first dense areas. When the users interests are partially revealed the
system could switch to the grid-based approach if these interests
appear to lie on sparse areas. We plan to explore this in a future
extended version of the paper.

Our experiment also revealed AIDE and AIDE-Sample have
similar performance regardless of the underlying data distribution.
This is because our sampled dataset preserves the distribution of the
exploration domains. This result is consistent for queries of differ-
ent complexity. We conclude that sampled datasets do not affect
our accuracy even in the presence of skewed data spaces.

Distance-based Hints The user can optionally specify a lower
bound for the sizes of elevant areas (see Section 5.2). In Fig-
ure 10(d) we show the results when the user has specified that the
area width along each dimension will be at least 4% on the normal-
ized domains (AIDE+DistanceHint). We compare it with the regu-
lar AIDE with no hints. These results are on medium relevant areas
and we vary the number of areas. AIDE+DistanceHint performs
better in all cases: to reach an accuracy higher than 70% we need
in average 656 samples which is 14% less samples than AIDE. The
hint allows us to know the exact exploitation level to use in order
to guarantee that from the first iteration the object discovery phase
will “hit” all relevant areas. Hence, it eliminates the need to spend
samples exploring more fine-grained exploration levels.

Clustered-based Misclassified Exploitation Next we compare
the time overhead when the clustering-based misclassified exploita-
tion is used (SamplePerCluster) with the approach that defines one
sampling area for each misclassified object (SamplePerMisclassi-

fied). Here, we used queries with a different number of large rel-
evant areas and we show the exploration time for reaching an ac-
curacy of at least 70%. Figure 10(e) demonstrates that the cluster-
ing approach can improve the time overhead by 45.6% in average,
since it creates one sampling area (i.e., issues one sample extrac-
tion query) per cluster. We note that the accuracy was not affected
by incorporating this optimization (we needed in average 2% more
tuples (15 tuples) to reach the same F -measure).

Adaptive sample size In Figure 10(f) we compare the accu-
racy when keeping the sample size in the boundary exploitation
phase fixed (SampleSize-Fixed) with adapting the size based on
the changes of the decision tree between iterations (SampleSize-

Adaptive). Our queries select an increasing number of disjoint large
areas and we report the accuracy we achieve when the user labels
500 samples. We can observe that our accuracy improved by an
average of 12%. This is due to the fact that our strategy reduces
the number of samples we collect through boundary exploitation,
therefore requesting feedback on more samples collected by the
other two phases. These two phases (relevant object discovery and
misclassified exploitation) have a higher impact on the F -measure,
therefore our accuracy is increased.

6.5 User Study Evaluation
Our user study used the AuctionMark dataset [1] that includes

information on auction items and their bids. We chose this “in-
tuitive" dataset, as opposed to the SDSS dataset, because the user
study requires identifying a significant number of users with suffi-

User Manual: Manual: AIDE: Reviewing Manual: AIDE:

returned reviewed reviewed savings time time

objects objects objects (%) (min) (min)

1 253,461 312 204.9 34.3% 60 39.7
2 656,880 160 82.4 48.5% 70 36.3
3 933,500 1240 157 87.3% 60 7.9
4 180,907 600 319 46.8% 50 28.2

5 2,446,180 650 288.5 55.6% 60 27.5

6 1,467,708 750 334.5 55.3% 75 33.8

7 567,894 1064 288.4 72.8% 90 24.8

Table 1: User study results.

cient understanding of the domain. Thus, AuctionMark meets the
requirement: we were able to identify a group of computer science
graduate students with SQL experiences and designed their explo-
ration task to be “identifying auction items that are good deals”.
Note that the exploration task should not be trivial, i.e., users should
not have an upfront understanding of the exact selection predicates
that would collect all relevant objects.

The exploration data set had a size of 1.77GB and it was de-
rived from the ITEM table of AuctionMark benchmark. It included
seven attributes: initial price, current price, number of bids, num-
ber of comments, number of dates an item is in an auction, the
difference between the initial and current item price, and the days
until the auction is closed for that item. Each user explored the data
set “manually", i.e., iteratively formulating exploratory queries and
reviewing their results until they obtained a query, Q, that satisfied
their interests. We then took Q as the true interest of a user and used
it to simulate user labeling results in AIDE. We measured how well
AIDE can predict the user query Q.

The results demonstrated that AIDE was able to reduce the user’s
reviewing effort by 66% in average (Reviewing savings column in
Table 1). Furthermore, with the manual exploration users were
shown 100s of thousands objects in total (Manual returned ob-

jects) while AIDE shows them only a few hundred strategically
selected samples. Furthermore, with the manual exploration our
users needed about an hour to complete their task (Manual time).
Assuming that the most of this time was spent on tuple reviewing,
we calculated the average tuple reviewing for each user. This var-
ied significantly across users (3secs - 26secs). Using this time we
estimated the total exploration time needed by AIDE including the
reviewing effort (AIDE time). AIDE was able to reduce the explo-
ration time 47% in average. We believe these time savings will be
even more pronounced for more complex exploration tasks (e.g., in
astronomical or medical domains) where examining the relevance
of an object requires significant time.

Our user study revealed that five out of the seven users used
only two attributes to characterize their interests . Similarly to our
SDSS workload, the most common type of query was conjunctive
queries that selected a single relevant area. Our exploration domain
was highly skewed and all our relevant areas were on dense re-
gions. These characteristics indicate that our micro-benchmark on
the SDSS dataset was representative of common exploration tasks
while it also covered highly more complex cases, i.e., small rele-
vant areas and disjunctive queries selecting multiple areas. More
details on our user study can be found in [13].

7. RELATED WORK
Query by Example Related work on “Query-By-Example”

(QBE) (e.g., [33]) focused on minimizing the burden to remem-
ber the finer details of SQL by translating user actions, such as
assigning a value to an attribute, to query statements. In [8] they
also propose a graphical visualization of the database that allows
users to formulate queries with widgets. These systems provide
alternative front-end interfaces and do not attempt to understand



user interests nor retrieve “similar” data objects. In [6] they learn
user queries based on given value assignments used in his intended
query, which are assumptions that are not made in our work.

Data Exploration Numerous recent research efforts focus on
data exploration. Our vision for automatic, interactive navigation
in databases was first introduced in [10]. AstroShelf [21] allows
users to collaboratively annotate and explore sky objects while
YMALDB [14] recommends to users data similar to their query re-
sults. DICE [16] supports highly efficient exploration of data cubes
using faceted search. SciBORQ [30] relies on hierarchical database
samples to support scientific exploration queries within strict query
execution times. Blink [7] relies on run-time sample selection to
provide real-time answers with statistical error guarantees. Idreos
et al. [17] envision a system for interactive data processing tasks
aiming to reduce the time spent on data analysis. Finally, [28] in-
teractively explores the space based on statistical properties of the
data and provides suggestions for further exploration. These sys-
tems are different than AIDE: we rely on the user’s feedback to
provide query suggestions and we focus on collecting samples that
improve our understanding of the user’s interests.

Query Relaxation Query relaxation techniques have also been
proposed for supporting exploration in databases [12]. In [20, 19]
they refine SQL queries to satisfy cardinality constraints on the
query result. In [15] they rely on multi-dimensional histograms
and distance metrics for range queries for accurate query size esti-
mation. These solutions are orthogonal to our problem; they focus
on adjusting the query parameters to reach a cardinality goal and
therefore cannot characterize user interests.

Active Learning The active learning community has proposed
solutions that maximize the learning outcome while minimizing
the number of samples labeled by the user [24, 27]. However,
these techniques assume either small datasets or negligible sam-
ple extraction costs which is not a valid assumption when datasets
span 100s of GBs and interactive performance is expected. Rel-
evance feedback have been studied for image retrieval [23], doc-
ument ranking [25], information extraction and segmentation [29]
and word disambiguation [32]. All these solutions are designed for
specific data types (images or text) and do not optimize for efficient
sample acquisition and data space exploration.

Collaborative and Interactive Systems In [18] a collaborative
system is proposed to facilitate formulation of SQL queries based
on past queries and in [11] they use collaborative filtering to pro-
vide query recommendations. However, both these systems do not
predict “similar” data object. In [26] they cluster related queries
as a means of understanding the intents of a given user query. The
focus is on web searches and not structured databases.

8. CONCLUSIONS
In this paper, we present AIDE, an Automatic Interactive Data

Exploration framework that assists users in discovering new in-
teresting data patterns and eliminate expensive ad-hoc exploratory
queries. AIDE relies on a seamless integration of classification al-
gorithms and data management optimization techniques that collec-
tively strive to accurately learn the user interests based on his rele-
vance feedback on strategically collected samples. Our techniques
minimize the number of samples presented to the user (which de-
termines the amount of user effort) as well as the cost of sample
acquisition (which amounts to the user wait time). AIDE can de-
liver highly accurate query predictions for very common conjunc-
tive queries with small user effort while, given a reasonable number
of samples, it can predict with high accuracy complex disjunctive
queries. It provides interactive performance as it limits the user
wait time per iteration of exploration to less than a few seconds.

Our user study also shows that AIDE improves the current state-
of-the-art of manual exploration by significantly reducing the user
effort and total exploration time.

In future work, we plan to improve our system by extending the
set of target queries beyond conjunctive queries and linear predi-
cates, for instance, to include non-linear predicates, as well as fur-
ther optimizing the database backend for exploration query work-
loads using materialized views and multi-query optimization.
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